
Experimental	Results	with	BPIO	2.0
• Initial	performance	evaluation	of	the	preloadable

BPIO	framework	with	the	IOR	benchmark
• Performance	improvement	and	average	bandwidth	

per	second	are	similar	to	the	direct	integration	of	
BPIO	into	an	application

Aequilibro Performance	Results
• IOR	synthetic	benchmark	(POSIX	and	MPI-IO):

– Setups:	(I)	Default,	(II)	ADIOS,	(III)	BPIO,	(IV)	Aequilibro
– 10	scaled	runs	per	test	case	on	Titan,	3	repetitions	per	run

• Real-world	HPC	workload	based	on	S3D	physics	code
• Metrics	of	interest:

– Performance	improvement	with	BPIO
– Average	bandwidth	per	second	(GB/s)

• Test	System:
– Titan	
– Cray	XK7
– 18,688	nodes
– Spider	II	
(Lustre-based)
file	system

– 144	OSSs
– 1,008	OSTs

This	research	used	resources	of	the	Oak	Ridge	Leadership	Computing	Facility,	located	in	the	National	Center	for	Computational	Sciences	at	the	
Oak	Ridge	National	Laboratory,	which	is	supported	by	the	Office	of	Science	of	the	Department	of	Energy	under	Contract	DE-AC05-00OR22725.

Balanced	Placement	I/O	Framework	– BPIO	2.0
BPIO	Runtime	Environment
• Build	as	a	shared,	preloadable library	(LD_PRELOAD)
• Utilizes	BPIO	library	for	balanced	data	placement
• Uses	function	interposition	to	prioritize	itself	over	

standard	function	calls
• End-to-end	and	per	job	load	balancing
• Supported	I/O	interfaces	include	POSIX	I/O	and	

MPI-IO;	HDF5	is	under	development
Dynamic	Instrumentation
• Wrapper	functions	to	intercept	I/O	functions
• Internal	functions	to	initialize	and	maintain	

internal	data	structures	and	module-specific	
I/O	characterization	data

• Set	of	functions	to	interact	with	the	BPIO	library

An	I/O	Load	Balancing	Framework	
for	Large-scale	Applications	(BPIO	2.0)

Research	Objectives
• Design	and	implement	a	preloadable,	shared	library	

based	on	the	BPIO	library
• Evaluate	the	performance	of	the	framework	with	a	

synthetic	benchmark	(IOR)	for	POSIX	I/O	and	MPI-IO
• Evaluate	with	real-world	HPC	workloads	on	Titan

Conclusions
• Aequilibro provides	performance	improvement,	but	

requires	the	explicit	BPIO	integration	into	ADIOS’	
transport	methods

• BPIO	2.0	is	built	as	a	dynamic	library	so	it	does	not	
require	any	code	modification	or	recompilation	

• Initial	experiments	show	similar	performance	
improvement	trends	as	a	direct	BPIO	integration

• Ongoing	and	future	work:
– Single	shared	file	support	for	MPI-IO
– Extensive	real-world	HPC	workload	evaluation
– Performance	comparison	of	Aequilibro and	BPIO	2.0
– Support	of	HDF5

Introduction
Balanced	Placement	I/O	(BPIO)	Library
• Topology-aware	and	balanced	data	placement	[1]
• Resolves	application-level	I/O	contention
• Computes	placement	cost	for	each	I/O	client	based	

on	a	tunable,	weighted	cost	function:

• Available	as	a	user	space	library,	but	requires	direct	
integration	into	the	source	code

Aequilibro – Integrating	BPIO	with	ADIOS	
• ADIOS	[2]	provides	portable,	fast,	scalable,	easy-to-

use,	metadata	rich	output	and	I/O	interfaces	can	be	
changed	during	runtime

• Aequilibro [3]	combines	the	optimization	done	at	
the	interconnect	level	by	BPIO	with	the	benefits	of	
the	ADIOS	I/O	framework

Sarah	Neuwirth*,	Feiyi Wang§,	Sarp Oral§,	Sudharshan Vazhkudai§,	and	Ulrich	Bruening*
*University	of	Heidelberg,	Germany,	{sarah.neuwirth,ulrich.bruening}@ziti.uni-heidelberg.de,	§Oak	Ridge	National	Laboratory,	USA,	{fwang2,oralhs,vazhkudaiss}@ornl.gov

Problem	Statement
• Large-scale	scientific	applications’	usage	patterns	

lead	to	I/O	resource	contention	and	load	imbalance
• Implementation	of	a	dynamic,	shared	library	based	

on	BPIO,	a	method	to	resolve	contention,	provides	a	
transparent	way	to	balance	resource	usage	without	
source	code	modification	or	recompilation

References
[1]	F.	Wang,	S.	Oral,	S.	Gupta,	D.	Tiwari,	and	S.	Vazhkudai,	Improving	Large-scale	

Storage	System	Performance	via	Topology-aware	and	Balanced	Data
Placement,	In	ICPADS	’14	(pp.	656-663).

[2]	J.	Lofstead,	S.	Klasky,	K.	Schwan,	N.	Podhorszki,	and	J.	Chen,	Flexible	IO	and	
Integration	for	Scientific	Codes	through	the	Adaptable	IO	System	(ADIOS),	In
CLADE	’08	(pp.15-24).

[3]	S.	Neuwirth,	S.	Oral,	F.	Wang,	Q.	Liu,	and	S.	Vazhkudai,	Improving	Large-scale
Application	Performance	with	ADIOS	and	BPIO,	Poster	at	SMC	‘15.

[1]

Placement)Cost)=)w1*R1 +w2 *R2 +w3 *R3 +w4 *R4 Fig. 3:	IOR	bandwidth	performance	for	setup	(I)	to	(IV)	for	POSIX	I/O	and	MPI-IO	including	errors	bars.

Fig. 1: Aequilibro software	stack.

Fig.	2:	Titan	supercomputing system.

Performance*Improvement*=*100***
BandwidthIOR_BPIO
BandwidthIOR_default

=*1
!

"
#
#

$

%
&
&

Fig. 4:	Performance	improvement	for	IOR	(I)	vs.	(III)	and	(II)	vs. (IV)	at	large-scale. Fig.	5: S3D	performance	improvement.

Fig. 6:	BPIO	runtime	environment.

Ri:	resource	component			wi:	weight	factor

Fig. 9:	Bandwidth performance	for	IOR	Default	and	IOR	BPIO	2.0.

Fig. 8:	Performance	improvement	for	IOR	BPIO	2.0	vs.	IOR	Default.

Fig. 7:	Dynamic	interception	of	I/O	functions	at	runtime.

